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Motivation

Concern is growing in the high-performance computing (HPC) community on the reliability of future extreme
scale systems. With systems continuing to grow dramatically in node count and individual nodes also
increasing in component count and complexity, large-scale systems are becoming less reliable. In fact,
experts are predicting that failure rates may go from the current state of a handful a day [26, 25] to multiple
failures an hour [2]. Recent studies have shown soft errors in main memory to be the source of many of
these failures [13, 15]. With the predicted increase of memory density on future exascale systems [28] and
expected power optimizations such as near-threshold supply voltages, the number of these failures is expected
to dramatically increase.

Several methods have been developed to address these errors. Approaches include hardware-based tech-
niques, such as single-bit error correction and double-bit detection (SEC-DED) and chipkill codes [9], as well
as algorithm-based mechanisms that encode the correction mechanics directly into the application [12, 8, 6].
These mechanisms may, however, be insufficient at the elevated failure rates predicted for exascale systems,
and most importantly, they may not protect the most important software running on a node - the operating
system.

An operating system (OS) resilient to soft errors in memory is key to the scalability of exascale systems
for a number of reasons. First, current operating systems are unable to recover from the vast majority
of failures. Second, though the typical operating system only occupies a small portion of a system’s total
physical memory footprint, recent studies show substantially more errors in this region than the remainder of
a system’s memory [13]. Lastly, future HPC system software will need to continue running in the presence of
memory failures if current application-based, forward error recovery mechanisms are to be successful. These
forward-error recovery methods are theorized to have lower overheads and less wasted computation than
current rollback/recovery mechanisms.

Our Position

In this paper we are advocating for augmenting the Kitten lightweight kernel [24] to make it resilient to
DRAM failures. Kitten is a special-purpose, limited-functionality OS developed at Sandia National Labo-
ratories that is designed for use on the compute nodes of massively parallel supercomputers. Its code base
is derived from Linux, but is modified to minimize kernel-level functionality to only that needed for a set
of mission-critical HPC applications and moves as much as possible into user-space. Kitten is similar to
previous lightweight kernels (LWK) [23] such as SUNMOS [16, 22], Puma [5, 30], Cougar [4], Catamount
[7, 29], and IBM’s CNK [1]. Kitten, however, distinguishes itself from these prior LWKs by providing a
combination of a Linux-compatible user environment [1], a more modern and extensible code base, and a
virtual machine monitor capability via the Palacios virtual machine monitor [17] which allows full-featured
guest operating systems to be loaded on-demand and executed with low overhead [14].

Kitten is an ideal target for this research; its focus on deterministic runtime behavior and simple data
structures allow us to more easily reconstruct lost system state in many cases [10]. Also, as mentioned
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previously, Kitten allows us to leverage the Palacios high-performance virtual machine monitor which delivers
machine-level virtualization functionality. As an example we consider errors in page-table memory. Like
many OSs, errors in Kitten’s page table memory are fatal, either killing the affected application or the entire
node. However, Kitten’s deterministic mapping of virtual to physical addresses would make it straightforward
to determine corruption had occurred and simple to recreate the corrupted page table memory contents from
the base physical address and length information stored in the address space region object. This could be
difficult in a general purpose OS like Linux due to its demand paging scheme, where unpredictable physical
addresses are assigned to virtual addresses at runtime. Extra redundant state would need to be stored,
and furthermore it may be difficult or impossible to tell which page table values have become corrupted if
hardware notification is not provided.

Related work

Resiliency and fault-tolerance has been identified by the Department of Energy and Department of Defense
as one of the key fundamental challenges of extreme-scale computing. The majority of the work in this
active research area has focused solely on the application and ignored the operating and runtime systems,
which is the focus of this work. Essentially all of these approaches attempt to improve the performance of
checkpoint/restart as it is the most widely used mechanism for fault-tolerance today. To the best of our
knowledge, the only work similar to our resilient operating and runtime systems work is in the context of
reliability for hostile environments, such as outer space and high radiation environments [27, 20, 18, 21, 19].
These methods typically have high runtime overheads [11] and it is unclear if they are appropriate for HPC.

In addition to the HPC application-based methods, a handful of researchers have been focusing on
designing fault-tolerant userspace libraries for HPC systems that applications can use to construct algorithm-
based resilience. An underlying assumption in these libraries is that the operating and runtime systems are
resilient to failures or if not, an expensive restart of the OS must be done.

Assessment

We believe our approach in hardening the OS to DRAM failures will be critical for the scalability of future
exascale-class systems. Additionally, the ability of the system software on a node to make progress in the
presence of failures is required for emerging algorithm based fault-tolerant methods. How best to have
applications take advantage of this resilient system software is still an open research question, though initial
results appear promising [3].

Challenges addressed: This approach addresses the resilience challenge for exascale class systems
identified by the Department of Energy and Department of Defense as one of the key fundamental challenges
for extreme-scale computing. The ability of OSs and applications to continue in the presence of faults will
be critical to the scalability of these systems.

Maturity: Lightweight kernels have been in production use on some of the largest systems in the world
for nearly twenty years. The Kitten LWK is the latest in a long line of these LWKs and has been shown to
be scalable on current parallel architectures [14].

Uniqueness: The fault-tolerance challenge addressed in this paper is unique to the post-petascale class
of systems due to the unprecedented scale and power concerns inherent in these platforms

Novelty: The majority of the work in the area of fault tolerance for HPC has focused solely on the
application and ignored the operating and runtime systems, the focus of this work. Essentially all cur-
rent approaches attempt to improve the performance of checkpoint/restart, as it is the most widely used
mechanism for fault-tolerance today.

Applicability: The results of this work would be applicable to any research area in which DRAM failures
are common and protecting against them important.

Effort: The Kitten LWK is the latest in a long line of these LWKs and has been shown to be scalable
on current scalable architectures [14]. Augmenting Kitten to handle failures will require several FTE’s to
target vulnerable OS subsystems, develop failure mitigation strategies and evaluate these strategies with
actual capability workloads. Additionally, involvement of application developers to take advantage of these
resilient systems will be required to ensure success.
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