
Evaluating Operating System Vulnerability to Memory
Errors

Kurt B. Ferreira, Kevin Pedretti, and Ron Brightwell
Scalable System Software Department

Sandia National Laboratories∗

t |ef k gr saer .d| ah}b rr @e ir obb d gi n vp{ ek

Patrick G. Bridges
Department of Computer Science

University of New Mexico
eni e .s c usg u m d@ .dbr

David Fiala and Frank Mueller
Department of Computer Science

North Carolina State University
ua ee cf .l @u e u dl }i mf a n s|d l{

ABSTRACT
Reliability is of great concern to the scalability of extreme-
scale systems. Of particular concern are soft errors in main
memory, which are a leading cause of failures on current
systems and are predicted to be the leading cause on future
systems. While great effort has gone into designing algo-
rithms and applications that can continue to make progress
in the presence of these errors without restarting, the most
critical software running on a node, the operating system
(OS), is currently left relatively unprotected. OS resiliency
is of particular importance because, though this software
typically represents a small footprint of a compute node’s
physical memory, recent studies show more memory errors
in this region of memory than the remainder of the sys-
tem. In this paper, we investigate the soft error vulnerability
of two operating systems used in current and future high-
performance computing systems: Kitten, the lightweight
kernel developed at Sandia National Laboratories, and CLE,
a high-performance Linux-based operating system developed
by Cray. For each of these platforms, we outline major
structures and subsystems that are vulnerable to soft er-
rors and describe methods that could be used to reconstruct
damaged state. Our results show the Kitten lightweight op-
erating system may be an easier target to harden against
memory errors due to its smaller memory footprint, largely
deterministic state, and simpler system structure.

Keywords
Fault-Tolerance ; Operating Systems ; DRAM Failures

∗Sandia National Laboratories is a multi-program labora-
tory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000.

c©2012 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor
or affiliate of the United States government. As such, the United States
Government retains a nonexclusive, royalty-free right to publish or repro-
duce this article, or to allow others to do so, for Government purposes only.
ROSS ’12, June 29, 2012, Venice, Italy
Copyright 2012 ACM 978-1-4503-1460-2/12/06 ...$10.00.

1. INTRODUCTION
Concern is growing in the high-performance computing

(HPC) community on the reliability of future extreme scale
systems. With systems continuing to grow dramatically in
node count and individual nodes also increasing in compo-
nent count and complexity, large-scale systems are becoming
less reliable. In fact, experts are predicting that failure rates
may go from the current state of a handful a day [41, 40]
to multiple failures an hour [5]. Recent studies have shown
soft errors in main memory to be the source of many of these
failures [23, 29]. With the predicted increase of memory den-
sity on future exascale systems [45] and expected power op-
timizations such as decreases in supply voltages, the number
of these failures is expected to dramatically increase.

Several methods have been developed to address these er-
rors. Approaches include hardware-based techniques, such
as single-bit error correction and double-bit detection (SEC-
DED) and chipkill codes [13], as well as algorithm-based
mechanisms that encode the correction mechanics directly
into the application [22, 11, 8]. These hardware-based mech-
anisms may, however, be insufficient at the elevated failure
rates predicted for exascale systems, and most importantly,
they may not protect the most important software running
on a node - the operating system.

An operating system (OS) resilient to soft errors in mem-
ory is key to the scalability of exascale systems for a number
of reasons. First, current operating systems are unable to
recover from the vast majority of failures. Second, though
the typical operating system only occupies a small portion of
a system’s total physical memory footprint, recent studies
show substantially more errors in this region than the re-
mainder of a system’s memory [23]. Lastly, future HPC sys-
tem software will need to continue running in the presence of
memory failures if current application-based, forward error
recovery mechanisms are to be successful. These forward-
error recovery methods are theorized to have lower overheads
and less wasted computation than current rollback/recovery
mechanisms.

In this work, we investigate the soft error vulnerability
of two operating systems used in current and future high-
performance computing systems: Kitten, the lightweight
kernel developed at Sandia National Laboratories [39], and
CLE, a high-performance HPC OS based on the Linux gen-
eral purpose OS. Our analysis shows that the simpler lightweight
kernel may be easier to harden against memory errors, be-

cause of its substantially smaller memory footprint, largely
deterministic state, and generally simpler system structure.

2. BACKGROUND

2.1 Current State of Practice
Coordinated checkpoint/restart is the dominant fault tol-

erance mechanism in high performance computing systems.
In current systems, this approach works as follows:

1. Applications periodically quiesce all activity at a global
synchronization point, for example a global barrier;

2. After synchronization, all nodes send some fraction
of application and system state, generally comprising
most of system memory, over the network to dedicated
I/O nodes;

3. These I/O nodes store the received checkpoint infor-
mation data to stable storage, currently hard disk-
based storage;

4. In the event of application crash, the stored checkpoint
can be used to restart the application at a prior known-
good state.

The continued dominance of this technique rests on a
number of key assumptions regarding failures that have thus
far remained true:

1. Application state can be saved and restored much more
quickly than a system’s mean time to interrupt (MTTI);

2. The hardware and upkeep (e.g. power) costs of sup-
porting frequent checkpointing are a modest portion
(currently perhaps 10-20%) of the system’s overall cost;
and

3. System faults that do not crash (fail-stop) the system,
such as so-called “soft errors”, are very rare.

In an environment where failures are common, traditional
checkpoint/restart has been shown to be inappropriate for
large-scale systems [41, 3, 5, 19]. Additionally, checkpoint/-
restart is problematic when dealing with non-crash failures.
In particular, checkpoint/restart preserves the impact of
failures that corrupt application state. Addressing this prob-
lem requires application developers to either restart the ap-
plication from scratch or analyze the contents of their check-
points looking for one prior to when the fault that corrupted
application state occurred.

Because of this limitation, there is significant effort under-
way within the community to develop forward-error recov-
ery methods for application fault tolerance [19, 16, 7]. These
methods deal with faults by correcting lost or incorrect state
rather than restarting an application from a previously saved
state. This approach avoids the wasted power and work of
rollback/recovery methods like checkpointing and typically
have significantly lower overheads.

2.2 DRAM Failures
Recent studies have shown DRAM errors in main mem-

ory to be the most common source of failures on today’s
HPC platforms [23, 29]. The prevalence of these DRAM
errors is related to the fact that typical large scale systems
contain tens to hundreds of thousands of DRAM modules.

A combination of the quantity and density of the informa-
tion stored makes these modules particularly susceptible to
faults. Moreover, with expected power optimizations, such
as decreased supply voltages and increases in memory den-
sities, the number of DRAM errors is expected to increase
for future exascale systems [45].

To address these faults, current HPC systems typically
include some form of error correction. The most common
memory resilience scheme has the memory controller write
additional checksum bits on each block of data. The mem-
ory controller then uses these checksum bits to detect and
correct DRAM errors. Single-symbol Error Correction and
Double-symbol Error Detection (SEC-DED) schemes allow
systems to recover from the simplest memory failures and at
least detect more complex (and less frequent) ones; or more
complex chipkill-based codes [13] that allow a system to tol-
erate an entire DRAM chip failure at the cost of reduced
performance and increased energy usage.

Uncorrectable DRAM errors, errors to two or more bits,
are becoming increasingly common in systems with SEC-
DED memory protection [42], with these errors occurring in
up to 8% of DIMMs per year. For an exascale class system,
this translates to multiple uncorrectable errors per hour.
Such errors generally result in a machine check exception
being delivered to the operating system, which then typi-
cally logs the error, and either kills the application to which
the memory location belongs, or reboots the system if the
error resides in a critical portion of the operating system’s
address space [27].

As stated earlier, though the typical operating system oc-
cupies a very small portion of the system’s total physical
memory, errors within the operating system’s address space
are much more likely to occur than errors within the remain-
der of memory [23]. Therefore, techniques to address these
errors at the system level are critical to the scalability of
exascale systems.

3. APPROACH
The advantages described thus far in this paper provide

a compelling reason to evaluate an HPC operating system’s
vulnerability to memory errors. In this evaluation, we con-
sider two operating systems of the type we expect to see on
an exascale class system. The first is the Kitten lightweight
kernel [39] developed by Sandia National Laboratories. The
second is a variant of the Linux general-purpose operating
system, called the Cray Linux environment.

Kitten is a special-purpose, limited-functionality OS de-
signed for use on the compute nodes of massively parallel
supercomputers. Its code base is derived from Linux, but is
modified to minimize kernel-level functionality to only that
needed for a set of mission-critical HPC applications and
moves as much as possible into user-space. Kitten is similar
to previous lightweight kernels (LWK) such as SUNMOS,
Puma, Cougar, Catamount, and IBM’s CNK [1]. Kitten,
however, distinguishes itself from these prior LWKs by pro-
viding a combination of a Linux-compatible user environ-
ment [1], a more modern and extensible code base, and a
virtual machine monitor capability via the Palacios virtual
machine monitor [32] which allows full-featured guest op-
erating systems to be loaded on-demand and at very low
overhead [28].

The Cray Linux Environment (CLE) is Cray’s scalable op-
erating system for their XT line of supercomputers. CLE is

based on the Linux general-purpose operating system with
the addition of a number of optimizations to improve scala-
bility. These optimizations include: enhancements to mem-
ory management, improved out-of-memory handling, and
modifications for decreased OS jitter.

In this work, we will consider vulnerability to three types
of common memory failures:

• Detected and corrected single-bit errors

• Detected but uncorrectable multi-bit errors

• Undetected “silent” data corruption

While fully protecting against each of these error types
would be ideal, in many cases, the cost of doing so would far
outweigh the benefit. Our goal is to identify the highest-
impact opportunities for improving an OS’s resilience to
memory errors.

Our evaluation will proceed as follows. First, for each
OS, we will look at its complexity and how that complexity
changes as a function of time. Our metric for complexity
will be Source Lines Of Code (SLOC) count [12]. This met-
ric gives us a rough measure of how difficult constructing
and managing memory error mitigation methods will be.
Next, we compare the memory footprints of the two operat-
ing systems, outlining how these footprints may change as
an application progresses. Lastly, we breakdown the vulner-
ability of an OS on a per-subsystem basis, enumerating the
subsystems’ critical state (state that must be free of errors).
Additionally, for this critical state we describe possible fail-
ure mitigation strategies.

4. RESULTS

4.1 Source Lines of Code
The Linux kernel has been enormously successful in at-

tracting developers and users over its twenty year history.
Due to this large development community and strong hard-
ware support, Linux has also been successful in attracting
HPC developers and is widely used within the community.
Figure 1(a) plots the growth of the full Linux kernel codebase
in terms of source lines of code (SLOC), tracking its growth
from approximately 120K SLOC in 1994 to its present size
of over 10M SLOC. As the figure shows, the majority of
the codebase consists of drivers. However, as shown in the
right graph of Figure 1, non-driver core kernel code is also
considerable and is growing rapidly. The current version of
Linux, version 3.3, consists of approximately 350K SLOC in
the core x86 architecture port (/kernel, /mm, and arch/x86
directories).

The Kitten codebase, in contrast, is currently a total of
246K SLOC, which drops to 66K SLOC once the Infiniband
drivers and associated Linux driver support code are re-
moved. Kitten’s core kernel code for the x86 architecture
port is 30K SLOC, which is an order of magnitude smaller
than the corresponding subset of Linux. This suggests that
Kitten is considerably less complex than Linux, and will be
easier to harden against memory errors.

4.2 Memory Footprint Comparison
Figure 2 compares the physical memory layouts used by

Kitten and Linux. The primary difference between the two
is that Kitten explicitly partitions memory into two regions,

one for kernel memory and another for user-space applica-
tions, while Linux uses a unified page pool and dynamically
assigns pages to different roles as needed. Kitten’s kernel
memory footprint has a fixed upper limit (currently 64 MB)
that does not change during runtime, while Linux’s foot-
print changes over time and can grow to the maximum size
of physical memory.

Each user-space process on Kitten requires three pages of
kernel memory to store task and address space structures,
as well as a static amount of kernel memory to store the ap-
plication’s page tables. When using 2 MB pages on the x86
architecture, approximately 8 KB of page table memory is
needed for each gigabyte of application memory. Linux has
similar per-process kernel memory requirements, with the
addition of the pages in the page cache being used by the
process. Kitten does not have a page cache. Additionally,
Linux uses the 4 KB page size by default, resulting in more
kernel memory being used for page tables (2 MB per GB
of application memory). Libraries such as libhugetlbfs and
recent transparent large page support in Linux are making
it easier for applications to use large page sizes, with the
caveat that memory fragmentation over time causes signifi-
cant issues.

addr 0

top of
memory

64 MB
Kernel Memory

Used For
Kernel

Text/Data/Heap/Stack
Page Tables

User
Memory

Used For

Application
Text/Data/Heap/Stack

ELF Excutables

Unified Page Pool

Used For
User Memory
Page Tables
Slab Caches
Buffer Cache
Kernel Data

etc.

Kitten Linux

Figure 2: Physical memory layout of Kitten and
Linux.

While a standard Linux kernel can grow to the full extent
of the physical memory on the machine, typically the size is
much smaller. In fact, CLE has a number of memory usage
optimizations that limit memory footprint size. Specifically,
CLE limits the size of the page cache using an I/O forward-
ing technique that avoids caching of file reads and writes.
Figure 3 shows a comparison of the Kitten and CLE foot-
prints. For Kitten, memory partitioning limits total kernel
size to 64MB. For the CLE, we show the average kernel size
measured using the smem [46] memory tracking tool while
running the LAMMPS [38] molecular dynamics code from
Sandia National Laboratories. From the figure, we see that
worst case Kitten OS size is more than an order of magni-
tude smaller than the average case from the CLE. Kitten’s
smaller and deterministic footprint generally means simpler
methods to protect and correct this state due to DRAM
errors.

4.3 Major Kernel Subsystems
This section examines several kernel subsystems that ex-

 10000

 100000

 1e+06

 1e+07

 1e+08

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

S
L
O

C

Date

Linux Full Source Tree

Linux drivers/

Kitten Full Source Tree

Kitten minus Infiniband Drivers

(a) Full Tree

 10000

 100000

 1e+06

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

S
L
O

C

Date

Linux Core, x86 only
Kitten Core, x86 only

(b) Core Kernel Code, x86 Port Only

Figure 1: Comparison of Linux Kernel and Kitten Kernel source lines of code (SLOC).

0 B

100 MB

200 MB

300 MB

400 MB

500 MB

600 MB

700 MB

800 MB

900 MB

Kitten CLE

S
iz

e
 (

b
y
te

s
)

Operating System

Static Kernel Size
Dynamic Kernel Size

Figure 3: Comparison of the worst case Kitten static
and dynamic kernel size to the average case mea-
sured on CLE. The average CLE memory footprint
is an order of magnitude larger then the worst case
for Kitten.

ist in both operating systems, and discusses techniques that
could be used to harden them against memory errors. The
subsystems are discussed in the order of their kernel mem-
ory footprint in the Kitten kernel. This analysis captures
the vast majority of Kitten’s kernel memory footprint, and
is representative of the baseline kernel-level functionality
needed to support highly-scalable HPC applications.

4.3.1 Page Table Memory
Both Kitten and Linux store page tables in kernel memory.

The amount of page table memory used varies depending
on the page size used: 4 KB pages require 2 MB of page
table memory per gigabyte of application memory, 2 MB
pages require 8 KB per gigabyte, and 1 GB pages require
8 bytes per gigabyte. In general, Kitten is always able to
use the larger page sizes for application memory due to its
segment-based and static memory allocation policy. Recent
Linux kernels attempt to use large page sizes when possible,

but memory fragmentation can limit the usefulness of this
optimization.

Both OSs consider page table memory errors as fatal, ei-
ther killing the affected application or the entire node. How-
ever, Kitten’s deterministic mapping of virtual to physical
addresses would make it straightforward to recreate the cor-
rupted page table memory contents from the base physical
address and length information stored in the address space
region object. This would not work on Linux due to its
demand paging scheme, where unpredictable physical ad-
dresses are assigned to virtual addresses at runtime. Extra
redundant state would need to be stored, and furthermore
it may be difficult or impossible to tell which page table val-
ues have become corrupted if hardware notification is not
provided.

4.3.2 Physical Memory Management
As described in Section 4.2, Linux uses a unified physical

page pool. Linux maintains a memory map array, with one
entry for each page of physical memory, to track the current
state of each page frame in the system. Each entry in the
table is 56 bytes, requiring 14 MB of overhead per GB of
physical memory (1.4%).

Kitten does not maintain a memory map array. Instead,
it maintains a free list of physical memory segments, where
each segment consists of a physically contiguous set of pages
with identical type (e.g., allocation status, memory type, as-
sociated NUMA node). Kitten’s segment list typically holds
10–100 entries for a high-end NUMA system, requiring less
than 4 KB of kernel memory. Kitten’s physical memory
tracking scheme would not work well for a general-purpose
kernel, but is a good match for its target workloads where
applications are allocated large contiguous regions of physi-
cal memory that are not demand paged.

As with page table memory, memory errors to the physi-
cal memory tracking data structures are considered fatal. In
this case, however, there is no easy way to recreate the cor-
rupted state. Instead, additional state of some form would
have to be maintained, such as software-maintained ECC
bits or redundant copies.

4.3.3 Dynamic Kernel Memory

Both OS kernels provide a mechanism for kernel subsys-
tems and device drivers to allocate dynamic memory, similar
to malloc() at user-level. Kitten implements this function-
ality using a buddy system memory allocator that covers
the kernel memory portion of the physical address space
(by default 64 MB). To avoid wasting memory due to over-
allocation, Kitten uses a minimum block size of 32 bytes,
which results in approximately 2 MB of buddy allocator
state (one bit per 32 byte block). Kitten was profiled on
an 8-core Intel system running an 8-thread OpenMP bench-
mark and found to use a maximum of 45 KB of dynamically
allocated kernel memory.

Linux implements dynamic kernel memory allocation via
a slab cache [6], which allocates physical memory from a
buddy allocator that covers all of physical memory. The
buddy allocator uses a 4 KB minimum block size, result-
ing in approximately 256 KB of overhead per gigabyte of
physical memory. Each slab cache requires a small state
tracking structure of approximately 128 bytes plus 32 bytes
per NUMA node. As an example, a Cray XE6 compute
node running CLE 4.0.36 (Linux 2.6.32.45) maintains 130
slab caches of various sizes.

In addition to all of the memory allocator data struc-
tures being assumed to be reliable (buddy allocator state,
slab cache info), each block of memory allocated has a small
header at its start storing the size of the block and where it
should be returned when freed (16 bytes for Kitten). This
data would need to be protected from memory errors some-
how, possibly by an ECC-like code or by storing redundant
copies of the header. Alternatively, the caller could be made
aware of the header so that it might try to protect it.

4.3.4 Address Spaces and Tasks
At its heart, Kitten’s main purpose is to bootstrap user-

space address spaces and tasks (threads and processes) and
then get out of the way. Both address spaces and tasks are
tracked by kernel-level state structures. Kitten’s task struc-
ture is 8 KB in size and includes the task’s kernel-level stack.
Kitten’s address space structure is around 800 bytes in size.
Both structures are almost entirely self-contained, with only
two pointers to additional data structures. Kitten’s address
space structure points to a list of virtual memory regions, of
which there are usually four for a typical application address
space: text, data, heap, and stack.

Linux has similar, but more complex task and address
space structures. For example, the Linux task structure has
over 160 fields, compared to 23 fields for Kitten. The obvious
reason for this large difference is the additional functionality
that Linux provides. However, much of this is not useful for
HPC workloads, and simply increases the effort needed to
understand and protect the codebase.

4.3.5 Kernel Entry and Exit
Kernel entry and exit occurs through well-defined inter-

faces. Both Linux and Kitten route all interrupts through
a small assembly stub, which saves the necessary state and
then calls the appropriate higher-level handler. Similarly,
when applications make system calls, the kernel is entered
through a common routine, which then redirects through a
table to the appropriate handler.

This structure could potentially be leveraged to do coarse-
grained kernel memory error detection and correction. At

each kernel entry and exit, the entire kernel memory space
could be checksummed to ensure that no kernel data was
silently corrupted. This is straightforward on Kitten due to
its contiguous kernel memory region. On Linux, kernel mem-
ory and application memory is interleaved both in physical
memory and in the kernel’s virtual address space, making
the checksum process more difficult but still possible.

Clearly, this approach would have high overhead when in-
voked. However, HPC applications typically do not make
many system calls, and could benefit from the increased
protection from memory errors. Additionally, it would elim-
inate the need to protect each individual kernel data struc-
ture, reducing memory overhead.

4.4 Page Retirement
An additional technique that applys to all of the kernel

subsystems discussed thus far is page retirement [23]. In this
scheme, the OS monitors the memory errors corrected by
hardware and uses this information to predict which memory
pages are likely to fail soon. Kernel data structures using
these pages can then be migrated to more stable memory
pages or discarded if appropriate. Recent versions of Linux
can already use this technique to discard clean page cache
pages that have experienced an uncorrectable memory error.

Kitten and Linux are both written in C, which makes mi-
grating kernel data structures difficult since it is difficult
to determine which other structures point to the data be-
ing moved. Furthermore, it is difficult to determine which
kernel-level data structures are using a given page. There-
fore, both OSs would require heavy modification in order to
take advantage of this technique. In this regard, Kitten’s
smaller codebase could potentially be an advantage.

5. RELATED WORK
Resiliency and fault-tolerance has been identified by the

Department of Energy and Department of Defense as one
of the key fundamental challenges of extreme-scale comput-
ing. The majority of the work in this active research area
has focused solely on the application and ignored the oper-
ating and runtime systems, which is the focus of this work.
Essentially all of these approaches attempt to improve the
performance of checkpoint/restart as it is the most widely
used mechanism for fault-tolerance today. To the best of our
knowledge, the only work similar to our resilient operating
and runtime systems work is in the context of reliability for
hostile environments, such as outer space and high radiation
environments [43, 36, 34, 37, 33]. These methods typically
have high runtime overheads [20] and it is unclear if they
are appropriate for HPC.

In addition to the HPC application-based methods, a small
handful of researchers have been focusing on designing fault-
tolerant userspace libraries for HPC systems that applica-
tions can use to construct algorithm-based resilience. In
each of these research areas is an underlying assumption
that the operating and runtime systems are resilient to fail-
ures or if not, an expensive restart of the OS must be done.
In the remainder of this section, we briefly describe each
of these approaches and discuss their potential benefits and
costs.

5.1 High-speed Storage for Checkpoint/Restart
Checkpointing to local disk and flash memory systems has

periodically been proposed to speed up checkpoint/restart

systems by placing large amounts of high-speed storage near
the data that must be checkpointed. Actually deploying
large amounts of local non-volatile storage in an exascale sys-
tem is potentially very challenging. Local disk-based stor-
age has traditionally been avoided because of the increased
failures it causes, for example. Upcoming non-volatile phase
change PCRAM, resistive RRAM devices, and modern NAMD
and NOR flash technologies provide high bandwidth and re-
liability, but are potentially very expensive. Unless their
cost per bit rivals that of disk, using such technologies for
checkpoint/restart purposes would result in checkpointing
hardware that makes up a much larger portion of the sys-
tem cost. Additionally, write durability issues may require
periodically replacing all flash memory in the system, fur-
ther impacting total costs.

5.2 Asynchronous Checkpointing and Message
Logging

Another approach that has been suggested to improve the
performance of checkpointing systems is uncoordinated or
asynchronous checkpointing [2, 25, 26]. These methods typ-
ically checkpoint and restore from local storage without the
synchronization used by coordinated checkpointing. To sup-
port a node restoring from a local asynchronous checkpoint,
nodes in this approach keep a log of recent messages that
they have sent. When a node restores from a previous check-
point, it can then replay reception of messages using remote
nodes’ logs.

While this approach can increase checkpointing perfor-
mance, logging increases the latency of messaging opera-
tions and potentially takes significant amounts of memory
on a node. Finally, asynchronous checkpointing approaches
can result in cascading rollbacks; recent work attempts to
bound the amount of rollback that may be necessary [21],
but also places non-trivial limits on application behavior.
Lastly, thus far there has been little work examining the
performance of a general message logging approach at the
scales one might expect to see at exascale.

5.3 Other Checkpointing Systems
Memory-based checkpointing [35, 44] uses the memory of

a remote machine to checkpoint node state. Unless node
memory is primarily read-only (in which case RAID 5-like
techniques can be used), this approach doubles the memory
demands of an application. Since memory is regarded as a
key budget and power constraint in exascale systems, the
benefits of these techniques are unclear.

Multi-level checkpointing [31] is a library-based approach
for controlling checkpointing to multiple storage targets, in-
cluding memory-based checkpoints, local checkpoint stor-
age, and remote checkpoints, into a single system. Because
of this, it shares some of the advantages and disadvantages of
memory-based checkpointing and local storage techniques.
Unlike these techniques, however, multi-level checkpointing
has the flexibility to choose between multiple levels of stor-
age based on system design parameters, making it a promis-
ing technique for exascale systems.

Finally, recent studies have looked at the benefits and
costs of combining replication with traditional checkpoint/-
restart [19, 17, 15]. These studies seek to find the “break-
even” points for replication, or the point where this replica-
tion approach uses fewer resources then traditional check-
point/restart alone. In contrast to the other methods de-

scribed thus far in this section, since replication typically
duplicates not only the application processes but also a sub-
set of the OS instances, errors with the operating and run-
time system can be handled.

5.4 Fault Tolerant Userspace Libraries
In contrast to the checkpointing work described above,

a number of researchers are investigating constructing li-
braries that are tolerant to certain kinds of faults. The
idea being that the applications use these libraries to con-
struct application-specific fault tolerance mechanisms, typ-
ically termed algorithm-based fault tolerance (ABFT) [22].
These ABFT techniques typically require a fault-tolerant
message passing environment. There have been a number
of these resilient message passing libraries based on MPI,
including; FT-MPI [24, 18], AMPI [10], MPI/FT [4], and
C3 [9]. The differences between these libraries is beyond the
scope of this work, but each of these libraries allows for an
application to continue operating in the presence of faults,
possibly in a degraded mode, and it is left up to the appli-
cation to ensure the result is correct.

5.5 Current Operating System Memory Er-
ror Handling

OS-level handling of DRAM faults has generally been ei-
ther very limited or used very heavyweight solutions. Linux
and other operating systems, for example, provide low-level
techniques for handling, logging, and notifying the applica-
tion of such errors [27]. These techniques generally termi-
nate the application or OS kernel, and potentially invoke
higher-level recovery systems based on, for example, check-
pointing or redundancy. Some systems have attempted to
provide additional protection against memory faults both on
CPUs [14] and GPUs [30], though with substantial cost.

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented a preliminary evaluation of op-

erating system vulnerability to DRAM failures, a common
error in current and future extreme-scale systems. Hard-
ening system software to this class of errors will be critical
for the success of emerging fault-tolerance methods. This
work focused on two HPC operating systems; Kitten, the
lightweight operating system developed at Sandia National
Laboratories and the Cray Linux Environment, a HPC vari-
ant of the Linux operating system. Each of these OSs rep-
resents an OS construction methodology currently used in
HPC. For each OS, we present the complexity of each OS in
terms of the metric SLOCCount, examine the memory foot-
print, and evaluate vulnerability on a per subsystem basis.
Where critical state is found, state that must be protected
from DRAM errors, we outline mitigation methods that can
used. Overall, these results suggest hardening the Kitten
lightweight kernel to to be more tractable due to its smaller
and deterministic state in comparison to Linux.

While this preliminary analysis shows there is promise in
this idea, more work is clearly needed. For example, a de-
tailed analysis of the mitigation techniques, outlining both
the space and performance overheads is need to decide which
methods are ideal. Additionally, hardening system software
to failures beyond those that occur in system RAM will be
key to scalability of extreme-scale systems. Lastly, evaluat-
ing the hardened OSs and system services to errors will be
key to outlining this work’s overall merit.

7. REFERENCES
[1] Adiga, N., and et al. An overview of the

BlueGene/L supercomputer. In Supercomputing,
ACM/IEEE 2002 Conference (nov. 2002), p. 60.

[2] Ahn, J. 2-step algorithm for enhancing effectiveness
of sender-based message logging. In SpringSim ’07:
Proceedings of the 2007 spring simulation
multiconference (2007), pp. 429–434.

[3] Amarasinghe, S., and et al. Exascale software
study: Software challenges in extreme scale systems.
http://users.ece.gatech.edu/mrichard/

ExascaleComputingStudyReports/ECSS%20report%

20101909.pdf, Sept. 2009.

[4] Batchu, R., Dandass, Y. S., Skjellum, A., and
Beddhu, M. MPI/FT: A model-based approach to
low-overhead fault tolerant message-passing
middleware. Cluster Computing 7, 4 (Jan. 2004),
303–315.

[5] Bergman, K., Borkar, S., Campbell, D.,
Carlson, W., Dally, W., Denneau, M., Franzon,
P., Harrod, W., Hill, K., Hiller, J., Karp, S.,
Keckler, S., Klein, D., Kogge, P., Lucas, R.,
Richards, M., Scarpelli, A., Scott, S., Snavely,
A., Sterling, T., Williams, R. S., and Yelick, K.
Exascale computing study: Technology challenges in
achieving exascale systems.
http://www.science.energy.gov/ascr/Research/

CS/DARPAexascale-hardware(2008).pdf, Sept. 2008.

[6] Bonwick, J., and Adams, J. Magazines and vmem:
Extending the slab allocator to many CPUs and
arbitrary resources. In Proceedings of the General
Track: 2002 USENIX Annual Technical Conference
(Berkeley, CA, USA, 2001), USENIX Association,
pp. 15–33.

[7] Bridges, P., Hoemmen, M., Ferreira, K. B.,
Heroux, M., Soltero, P., and Brightwell, R.
Cooperative application/os DRAM fault recovery.
Workshop on Resiliency in High Performance
Computing (Resilience) in Clusters, Clouds, and Grids
in conjunction with the Euro-Par Conference, Lecture
Notes in Computer Science (2011), –.

[8] Bronevetsky, G., and de Supinski, B. Soft error
vulnerability of iterative linear algebra methods. In
Proceedings of the 22nd Annual International
Conference on Supercomputing (New York, NY, USA,
2008), ICS ’08, ACM, pp. 155–164.

[9] Bronevetsky, G., Marques, D., Pingali, K., and
Stodghill, P. Collective operations in
application-level fault-tolerant MPI. In Proceedings of
the 17th annual international conference on
Supercomputing (New York, NY, USA, 2003), ICS ’03,
ACM, pp. 234–243.

[10] Chakravorty, S., Mendes, C., and KalÃl’, L.
Proactive fault tolerance in mpi applications via task
migration. Strategy 4297 (2006), 485âĂŞ496.

[11] Chen, Z., and Dongarra, J. Algorithm-based
checkpoint-free fault tolerance for parallel matrix
computations on volatile resources. In Parallel and
Distributed Processing Symposium, 2006. IPDPS
2006. 20th International (April 2006).

[12] David A. Wheeler. Sloccount.
http://www.dwheeler.com/sloccount, March 1 2012.

[13] Dell, T. J. A white paper on the benefits of
chipkill-correct ECC for PC server main memory. IBM
Microelectronics Division, Nov. 1997.

[14] Dopson, D. SoftECC: A system for software memory
integrity checking. Master’s thesis, Massachusetts
Institute of Technology, September 2005.

[15] Elliot, J., Kharbas, K., Fiala, D., Mueller, F.,
Ferreira, K., and Engelmann, C. Combining
partial redundancy and checkpointing for HPC. In
International Conference on Distributed Computing
Systems (Los Alamitos, CA, USA, June 2012), IEEE
Computer Society Press, pp. 1–11. [to appear].

[16] Engelmann, C., and Geist, G. A. A.
Super-scalable algorithms for computing on 100,000
processors. In Lecture Notes in Computer Science:
Proceedings of the 5th International Conference on
Computational Science (ICCS) 2005, Part I (Atlanta,
GA, USA, May 22-25, 2005), vol. 3514, Springer
Verlag, Berlin, Germany, pp. 313–320.

[17] Engelmann, C., Ong, H. H., and Scott, S. L. The
case for modular redundancy in large-scale high
performance computing systems. In Proceedings of the
8th IASTED International Conference on Parallel and
Distributed Computing and Networks (PDCN) 2009
(Innsbruck, Austria, Feb. 16-18, 2009), ACTA Press,
Calgary, AB, Canada, pp. 189–194.

[18] Fagg, G. E., Angskun, T., Bosilca, G.,
Pjesivac-Grbovic, J., and Dongarra, J. Scalable
fault tolerant mpi: Extending the recovery algorithm.
In PVM/MPI (2005), B. D. Martino, D. Kranzlmüller,
and J. Dongarra, Eds., vol. 3666 of Lecture Notes in
Computer Science, Springer, pp. 67–75.

[19] Ferreira, K., Riesen, R., Stearley, J., III, J.
H. L., Oldfield, R., Pedretti, K., Bridges, P.,
Arnold, D., and Brightwell, R. Evaluating the
viability of process replication reliability for exascale
systems. In Proceedings of the ACM/IEEE
International Conference on High Performance
Computing, Networking, Storage, and Analysis,
(SC’11) (Nov 2011).

[20] Fiala, D., Ferreira, K. B., Mueller, F., and
Engelmann, C. A tunable, software-based DRAM
error detection and correction library for HPC. In
Lecture Notes in Computer Science: Proceedings of the
European Conference on Parallel and Distributed
Computing (Euro-Par) 2011: Workshop on Resiliency
in High Performance Computing (Resilience) in
Clusters, Clouds, and Grids (Bordeaux, France, Aug
2011), Springer Verlag, Berlin, Germany.

[21] Guermouche, A., Ropars, T., Brunet, E., Snir,
M., and Cappello, F. Uncoordinated checkpointing
without domino effect for send-deterministic message
passing applications. In Proceedings of the 2011 IEEE
International Parallel and Distributed Processing
Symposium (May 2011).

[22] Huang, K.-H., and Abraham, J. A.
Algorithm-based fault tolerance for matrix operations.
IEEE Transactions on Computers C-33, 6 (June
1984).

[23] Hwang, A. A., Stefanovici, I. A., and
Schroeder, B. Cosmic rays don’t strike twice:
understanding the nature of DRAM errors and the

implications for system design. In Proceedings of the
seventeenth international conference on Architectural
Support for Programming Languages and Operating
Systems (New York, NY, USA, 2012), ASPLOS ’12,
ACM, pp. 111–122.

[24] Inovative Computing Laboratory. FT-MPI.
http://icl.cs.utk.edu/ftmpi, March 1 2012.

[25] Jiang, Q., and Manivannan, D. An optimistic
checkpointing and selective approach for consistent
global checkpoint collection in distributed systems. In
Proceedings of the 2007 IEEE International Parallel
and Distributed Processing Symposium (Mar. 2007).

[26] Johnson, D. B., and Zwaenepoel, W. Recovery in
distributed systems using asynchronous and
checkpointing. In Proceedings of the seventh annual
ACM Symposium on Principles of distributed
computing (1988), pp. 171–181.

[27] Kleen, A. mcelog: memory error handling in user
space. In Proceedings of Linux Kongress 2010
(Nuremburg, Germany, September 2010).

[28] Lange, J. R., Pedretti, K. T., Hudson, T.,
Dinda, P. A., Cui, Z., Xia, L., Bridges, P. G.,
Gocke, A., Jaconette, S., Levenhagen, M., and
Brightwell, R. Palacios and kitten: New high
performance operating systems for scalable virtualized
and native supercomputing. In IPDPS’10 (2010),
pp. 1–12.

[29] Li, S., Chen, K., Hsieh, M.-Y., Muralimanohar,
N., Kersey, C. D., Brockman, J. B., Rodrigues,
A. F., and Jouppi, N. P. System implications of
memory reliability in exascale computing. In
Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and
Analysis (New York, NY, USA, 2011), SC ’11, ACM,
pp. 46:1–46:12.

[30] Maruyama, N., Nukada, A., and Matsuoka, S. A
high-performance fault-tolerant software framework
for memory on commodity GPUs. In Parallel
Distributed Processing (IPDPS), 2010 IEEE
International Symposium on (april 2010), pp. 1 –12.

[31] Moody, A., Bronevetsky, G., Mohror, K., and
Supinski, B. R. d. Design, modeling, and evaluation
of a scalable multi-level checkpointing system. In
Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing,
Networking, Storage and Analysis (Washington, DC,
USA, 2010), SC ’10, IEEE Computer Society,
pp. 1–11.

[32] Northwestern University. Palacios: An os
independent embeddable vmm.
http://v3vee.org/palacios, March 10 2012.

[33] Oh, N., Shirvani, P., and McCluskey, E.
Control-flow checking by software signatures.
Reliability, IEEE Transactions on 51, 1 (mar 2002),
111–122.

[34] Oh, N., Shirvani, P., and McCluskey, E. J. Error
detection by duplicated instructions in super-scalar
processors. Reliability, IEEE Transactions on 51, 1
(mar 2002), 63–75.

[35] Plank, J. S., Kim, Y. B., and Dongarra, J. J.
Algorithm-based diskless checkpointing for fault
tolerant matrix operations. In Twenty-Fifth

International Symposium on Fault-Tolerant
Computing. Digest of Papers (Pasadena, CA, USA,
June 1995), Los Alamitos, CA, USA : IEEE Comput.
Soc. Press, 1995, pp. 351–360.

[36] Rebaudengo, M., Reorda, M., Violante, M., and
Torchiano, M. A source-to-source compiler for
generating dependable software. In Source Code
Analysis and Manipulation, 2001. Proceedings. First
IEEE International Workshop on (2001), pp. 33–42.

[37] Reis, G. A., Chang, J., Vachharajani, N.,
Rangan, R., and August, D. I. SWIFt: Software
implemented fault tolerance. In Proceedings of the
international symposium on Code generation and
optimization (Washington, DC, USA, 2005), CGO’05,
IEEE Computer Society, pp. 243–254.

[38] Sandia National Laboratories. The LAMMPS
molecular dynamics simulator.
http://lammps.sandia.gov, April 2010.

[39] Sandia National Laboratory. Kitten lightweight
kernel. https://software.sandia.gov/trac/kitten,
March 10 2012.

[40] Schroeder, B., and Gibson, G. A. A large-scale
study of failures in high-performance computing
systems. In Proceedings of the International
Conference on Dependable Systems and Networks
(DSN2006) (June 2006).

[41] Schroeder, B., and Gibson, G. A. Understanding
failures in petascale computers. Journal of Physics:
Conference Series 78, 1 (2007), 012022.

[42] Schroeder, B., Pinheiro, E., and Weber, W.-D.
DRAM errors in the wild: a large-scale field study.
Communications of the ACM 54 (February 2011),
100–107.

[43] Shirvani, P., Saxena, N., and McCluskey, E.
Software-implemented EDAC protection against
SEUs. Reliability, IEEE Transactions on 49, 3 (sep
2000), 273 –284.

[44] Silva, L. M., and Silva, J. G. An experimental
study about diskless checkpointing. In 24th
EUROMICRO Conference (Vasteras, Sweden, August
1998), IEEE Computer Society Press, pp. 395 – 402.

[45] Simon, H. Exascale challenges for the computational
science community. Tech. rep., Lawrence Berkeley
National Laboratory and UC Berkeley, Oct. 2010.

[46] SMEM. Memory reporting tool.
http://www.selenic.com/smem/, March 1 2012.

